The X-ray crystallographic structure of Escherichia coli branching enzyme.

نویسندگان

  • Marta C Abad
  • Kim Binderup
  • Jorge Rios-Steiner
  • Raghuvir K Arni
  • Jack Preiss
  • James H Geiger
چکیده

Branching enzyme catalyzes the formation of alpha-1,6 branch points in either glycogen or starch. We report the 2.3-A crystal structure of glycogen branching enzyme from Escherichia coli. The enzyme consists of three major domains, an NH(2)-terminal seven-stranded beta-sandwich domain, a COOH-terminal domain, and a central alpha/beta-barrel domain containing the enzyme active site. While the central domain is similar to that of all the other amylase family enzymes, branching enzyme shares the structure of all three domains only with isoamylase. Oligosaccharide binding was modeled for branching enzyme using the enzyme-oligosaccharide complex structures of various alpha-amylases and cyclodextrin glucanotransferase and residues were implicated in oligosaccharide binding. While most of the oligosaccharides modeled well in the branching enzyme structure, an approximate 50 degrees rotation between two of the glucose units was required to avoid steric clashes with Trp(298) of branching enzyme. A similar rotation was observed in the mammalian alpha-amylase structure caused by an equivalent tryptophan residue in this structure. It appears that there are two binding modes for oligosaccharides in these structures depending on the identity and location of this aromatic residue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy

ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...

متن کامل

Nano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy

ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...

متن کامل

The X-Ray Crystal Structure of Escherichia coli Succinic Semialdehyde Dehydrogenase; Structural Insights into NADP+/Enzyme Interactions

BACKGROUND In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and gamma-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. I...

متن کامل

CRYSTALLOGRAPHIC, MORPHOLOGICAL AND W-H MODELS INVESTIGATIONS ON Mn SUBSTITUTED ZnO NANOCRYSTALS

Mn doped ZnO nanocrystals were prepared by co-precipitation route sintered at 450 °C temperature. XRD results indicate that the samples having hexagonal (wurtzite) structure. From X-ray data it is found that the lattice parameters increase with increasing Mn concentration. The X-ray density decreases with increasing Mn concentration of Zn 1-x Mnx O nanocrystals. It indicates that the Mn...

متن کامل

Graphene Oxide Antibacterial Sheets: Synthesis and Characterization (RESEARCH NOTE)

Graphene oxide (GO) was synthesized by oxidation of graphite powder using a time-saving modification of Hummers’ method and its antibacterial activity was investigated. Different techniques were applied to characterize the synthesized GO. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to investigate the crystallinity, morphology, topograp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 44  شماره 

صفحات  -

تاریخ انتشار 2002